S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress
نویسندگان
چکیده
Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H(2)O(2) level under abiotic stress.
منابع مشابه
Changes in Leaf Proteins of Peas, Pisum sativum L., during Development on Deflorated Plants.
The soluble (sap) proteins of leaves of pea, Pisum sativum L. cvs. Alaska and Greenfeast, allowed to develop normally or deflowered, to prevent senescence, were separated by isoelectric focusing.There was a decline in certain proteins, with increases in others as the leaves aged but preventing senescence of the whole plant did not alter the pattern of change in leaf proteins. We concluded that ...
متن کاملAntioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants.
In this work the influence of the nodulation of pea (Pisum sativum L.) plants on the oxidative metabolism of different leaf organelles from young and senescent plants was studied. Chloroplasts, mitochondria, and peroxisomes were purified from leaves of nitrate-fed and Rhizobium leguminosarum-nodulated pea plants at two developmental stages (young and senescent plants). In these cell organelles,...
متن کاملRole of nitrogen content of pea (Pisum sativum L.) on pea aphid (Acyrthosiphon pisum Harris) establishment
The leaf nitrogen content is generally accepted as an indicator of food quality and as a factor affecting host selection by phytophagous insects. The alate pea aphids (Acyrthosiphon pisum Harris, Aphididae) were given a choice among non-nodulated pea plants (Pisum sativum L.) supplied with one of four nitrate-N levels (0, 3, 15 and 30 mM). When whole plants were exposed to aphids for 7 days, th...
متن کاملSubcellular Location of NADPH-Dependent Hydroxypyruvate Reductase Activity in Leaf Protoplasts of Pisum sativum L. and Its Role in Photorespiratory Metabolism.
Protoplasts purified from pea (Pisum sativum L.) leaves were lysed and fractionated to assess the subcellular distribution of NADPH-dependent hydroxypyruvate reductase (NADPH-HPR) activity. Rate-zonal centrifugation and sucrose-gradient experiments demonstrated that most (about 70%) of the NADPH-HPR activity was located in the supernatant or cytosol fraction. Detectable, but relatively minor ac...
متن کاملResponses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress
The possible involvement of activated oxygen species in the mechanism of damage by NaClstress was studied in leaves of two varieties of pea (Pisum sativum L.) cv. EC 33866 and Puget. Thelevel of lipid peroxidation, enzyme activity of superoxide dismutase (SOD, EC 1.15.1.1), ascorbateperoxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), dihydroascorbate reductase(DHAR, 1.8.5.1)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 63 شماره
صفحات -
تاریخ انتشار 2012